STABILE 1,2-SILAOXETANE DURCH UMSETZUNG VON 1,1-BIS(TRIMETHYLSILYL)-2(R)-2-TRIMETHYLSILOXY-1-SILAETHEN MIT CYCLOPENTADIENONEN UND α -PYRONEN

Gottfried Märkl und Michael Horn
Institut für Organische Chemie der Universität Regensburg

Summary: The title silaalkenes react with cyclopentadienones to give the stable 1,2-silaoxetanes. The silaoxetanes of fluorenone, benzophenone and α -pyrones undergo rearrangement- and cleavage reactions.

1,2-Silaoxetane $\underline{1}$ werden als Zwischenstufen bei den Abfangreaktionen von instabilen Silaalkenen mit nicht enolisierbaren Ketonen unter Bildung von Alkenen und Silanonen postuliert:

Die Isolierung der 1,2-Silaoxetane gelang bisher nicht, weil diese offensichtlich unter den Bedingungen der Darstellung der Silaalkene nicht stabil sind [1].

Die von W. Ando und Mitarb. [2] beschriebene Bildung eines stabilen 1,2-Silaoxetans $\underline{4}$ beim Erhitzen von Pentamethyldisilanyldiazotat $\underline{2}$ in 7-Norbornon $\underline{3}$ veranlaßt uns, über unsere eigenen Untersuchungen zu berichten.

Wir können zeigen, daß die 1,1-Bis(trimethylsilyl)-2(R)-2-trimethylsiloxy-1-silaethene $\underline{5}$, die in einem temperaturabhängigen Gleichgewicht mit den dimeren 1,2-Disilacyclobutanen stehen [3], mit den tetrasubstituierten Cyclopentadienonen 6 zu den 1,2-Silaoxetanen 7 mit spiro-

cyclischer Struktur reagieren; eine (4+2)-Cycloaddition von $\underline{5}$ mit $\underline{6}$ -wie sie mit offenkettigen Dienen stattfindet [3] - wird nicht beobachtet:

Zur Bildung von 7a - 7c wird das Dimere von 5a in siedendem Dioxan oder Toluol in Gegenwart des entsprechenden Cyclopentadienons umgesetzt. Das photochemisch dargestellte Silaethen 5b [3] reagiert bereits bei Raumtemperatur mit 6a (Tabelle 1).

Tabel1	le 1					
Verb.	Reaktions- bedingungen	Ausb.	Schmp. C	¹ H-NMR (δ, ppm) Si(CH ₃) ₃ OSi(CH ₃) ₃	13 C-NMR (δ, ppm) Si(CH ₃) ₃ OSi(CH ₃) ₃	c ³
<u>7a</u>	Dioxan, 2h 100 ^O C	61	183- 185	-0.33; -0.12 0.20	-1.18, -0.40 3.25	72.67 87.24
<u>7b</u>	Toluol, 15min 110 ^O C	75	103- 104	-0.24; -0.05 0.32	-0.78, 0.71 2.53	68.54 87.44
<u>7c</u>	Toluol, 15min 110 °C	67	164- 165	-0.38; 0.18 0.21		
<u>7a</u>	Ether, 18h	63	165- 167	-0.19; 0.18 0.26		

In den IR-Spektren von $\underline{7}$ wird keine C=O-Valenzschwingung beobachtet. Die $^1\text{H-NMR-}$ und die $^{13}\text{C-NMR-Spektren}$ zeigen das Vorliegen von drei verschiedenen Si(CH $_3$) $_3$ -Gruppen; die in $\underline{4}$ für das Spirokohlenstoffatom (C 4) beobachtete Tieffeldverschiebung (δ = 113.8 ppm) wird für C 4 in $\underline{7}$ nicht beobachtet.

Die Umsetzung von Fluorenon mit $\underline{5a}$ verläuft überraschend nicht zu dem entsprechenden 1,2-Silaoxetan. Hier entsteht das 9-Siloxy-10-phenyl-phenanthren $\underline{8}$, dessen Struktur sich durch die Spaltung des Silylethers

mit Methyllithium [4] zum 9-Hydroxy-10-phenyl-phenanthren (Schmp. 137-139 °C, Lit.Schmp. 142-143 °C [5] eindeutig beweisen läßt:

8, Ausb. 77 %, Schmp. 90 - 91 °C, $\frac{1}{\text{H-NMR}}$; Si(CH₃)₃ : δ = -0.27 ppm; OSi(CH₃)₃: 0.27 ppm.

Die Bildung von $\underline{8}$ kann nur mit einer Umlagerung des zunächst entstandenen 1,2-Silaoxetans zum silylsubstituierten Oxiran $\underline{9}$ und einer "double migration" [6] von $\underline{9}$ zu $\underline{8}$ erklärt werden:

Bei einer einfachen Silylverschiebung ("silyl migration" [6]) in $\underline{9}$ wäre ein 9-[(Bis(trimethylsilyl)-trimethylsiloxy)siloxy-benzyliden]-fluoren und nicht das Ringerweiterungsprodukt $\underline{8}$ zu erwarten gewesen.

Nach diesen Befunden ist es wahrscheinlich, daß der bei der Umsetzung von Benzophenon mit <u>5a</u> gebildete Silylether <u>10</u> ebenfalls das Ergebnis einer "double migration" des intermediär entstehenden Oxirans sein muß:

Eine exp. Unterscheidung zur einfachen Silylverschiebung wäre allerdings nur mit substituierten Benzophenonen möglich.

 $\frac{10}{13}$, Ausb. 77 %, Schmp. 92-93 °C; $\frac{1}{\text{H-NMR}}$; Si(CH₃)₃: -0.09 ppm; OSi(CH₃)₃: 0.05 ppm, $\frac{1}{13}$ C-NMR; Si(CH₃)₃: -1.78 ppm; OSi(CH₃)₃: 2.24 ppm.

Die Umsetzung von α -Pyronen mit den Silaalkenen $\underline{5}$ verläuft wiederum andersartig. Hier zerfallen die primär gebildeten 1,2-Silaoxetane im Sinne einer "Peterson-Wittig-Reaktion" zu den 2H-Pyran-Derivaten $\underline{11}$ und Bis-trimethylsilyl-silanon, das zu 12 trimerisiert:

<u>11a</u>, Ausb. 16 %, Schmp. 135-143 °C; ${}^{1}_{\text{H-NMR}}$; OSiMe₃: δ = 0.09 ppm; MS: 562.23 ${}^{(C_{39}H_{34}O_{2}Si)}$.

LITERATURVERZEICHNIS

- [1] C.M. Golino, R.D. Bush, D.N. Roark, L.H. Sommer, J. Organomet. Chem. 66, 29 (1974); D.N. Roark, L.H. Sommer, J. Chem. Soc., Chem. Commun. 1973, 167; M. Ishikawa, T. Fuchikami, M. Kumada, J. Organomet.Chem. 149, 37 (1978).
- [2] W. Ando et al., J. Am. Chem. Soc. 104, 6830 (1982).
- [3] A.G. Brook, J.W. Harris, J. Lennon, M. El Sheikh, J. Am. Chem. Soc. 101, 83 (1979).
- [4] G. Stork, P.F. Hudrlik, J. Am. Chem. Soc. 90, 4464 (1968).
- [5] C.F. Koelsch, J.Am.Chem.Soc. <u>56</u>, 480 (1934); R.C. Reynold, C. Fuson, S.J. Strycker, J.Am.Chem.Soc. <u>79</u>, 2633 (1957).
- [6] A.R. Bassindale, A.G. Brook, P. Chen, J. Lennon, J. Organomet. Chem. 94, C21 (1975).

(Received in Germany 17 January 1983)